電源系統設計工程師總想在更小電路板面積上實現更高的功率密度,對需要支持來自耗電量越來越高的FPGA、ASIC和微處理器等大電流負載的數據中心服務器和LTE基站來說尤其如此。為達到更高的輸出電流,多相系統的使用越來越多。為在更小電路板面積上達到更高的電流水平,系統設計工程師開始棄用分立電源解決方案而選擇電源模塊。這是因為電源模塊為降低電源設計復雜性和解決與DC/DC轉換器有關的印刷電路板(PCB)
電源系統設計工程師總想在更小電路板面積上實現更高的功率密度,對需要支持來自耗電量越來越高的FPGA、ASIC和微處理器等大電流負載的數據中心服務器和LTE基站來說尤其如此。為達到更高的輸出電流,多相系統的使用越來越多。為在更小電路板面積上達到更高的電流水平,系統設計工程師開始棄用分立電源解決方案而選擇電源模塊。這是因為電源模塊為降低電源設計復雜性和解決與DC/DC轉換器有關的印刷電路板(PCB)布局問題提供了一種受歡迎的選擇。本文討論了一種使用通孔布置來最大化雙相電源模塊散熱性能的多層PCB布局方法。其中的電源模塊可以配置為兩路20A單相輸出或者單路40A雙相輸出。使用帶通孔的示例電路板設計來給電源模塊散熱,以達到更高的功率密度,使其無需散熱器或風扇也能工作。多層電路板有一個頂層走線層(電源模板安裝于其上)和利用通孔連接至頂層的兩個內埋銅平面。該結構有非常高的導熱系數(低熱阻),使電源模塊的散熱很容易。為理解這一現象,我們來分析一下ISL8240MEVAL4Z評估板的實現(圖2)。這是一個在四層電路板上支持雙路20A輸出的電源模塊評估板SAC305* 是最流行的無鉛焊料,由96.5%錫、3.0%銀和0.5%銅組成。 W = 瓦特,in = 英寸,C = 攝氏度,m = 米,K =開氏度請注意,當熱向下流過通孔并達到另一層時,特別是另一個銅層時,其將橫向擴散到該材料層。添加越來越多通孔最終會降低效果,因為從一個通孔橫向擴散到附近材料的熱最終會與來自另一個方向(源自從另一通孔)的熱相遇。ISL8240MEVAL4Z評估板的尺寸是3英寸x4英寸。電路板上的頂層和底層有2盎司銅,還有兩個內層各包含2盎司銅。為使這些銅層發揮作用,電路板有917個12密耳直徑的通孔,它們全都有助于將熱從電源模塊擴散到下面的銅層。為適應電壓軌數目的增多和更高性能的微處理器和FPGA,諸如ISL8240M電源模塊等先進的電源管理解決方案,通過提供更大功率密度和更小功耗來幫助提高效率。通孔在電源模塊電路板設計中的最優實現,已成為實現更高功率密度的一個越來越重要的因素。